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Abstract

We consider a game between a principal, an agent, and a monitor in which the
principal would like to rely on messages by the monitor to target intervention against
a misbehaving agent. The difficulty is that the agent can credibly threaten to retaliate
against likely whistleblowers in the event of an intervention. In this setting, interven-
tion policies that are very responsive to the monitor’s message provide very informative
signals to the agent, allowing him to target retaliation and hence shut down communi-
cation channels. Successful intervention policies must garble the information provided
by monitors and cannot be fully responsive. We show that even if hard evidence is
unavailable and monitors have heterogeneous incentives to (mis)report, it is possible
to establish robust bounds on equilibrium corruption using only non-verifiable reports.
Our analysis suggests a simple heuristic to calibrate intervention policies: first get mon-
itors to complain, then scale up enforcement while keeping the information content of
intervention constant.
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support from the European Union’s Seventh Framework Programme (FP/2007-2013) / ERC Starting Grant
Agreement no. 283837.
†Chassang: chassang@nyu.edu, Padró i Miquel: g.padro@lse.ac.uk.
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1 Introduction

Organizations and regulatory agencies often attempt to protect informants and whistleblow-

ers to improve information transmission.1 Anonymity guarantees are widely regarded as

one of the primary means to achieve this goal: the 2002 Sarbanes-Oxley act, for instance,

requires public companies to establish anonymous reporting channels. However, work by

Kaplan et al. (2007, 2009) shows that greater anonymity guarantees seem to have little

effect on information flows in practice.2 This can be explained by the fact that in many

cases the set of people informed about misbehavior is small, and therefore formal anonymity

offers little actual protection. Police officers on patrol are a particularly salient example

in which anonymity becomes meaningless: misbehavior by one officer is only observed by

the other.3 In such cases, whistleblowing is easily deterred with explicit or implicit threats

of retaliation from misbehaving individuals. The primary objective of this paper is to de-

velop whistleblowing and counter-corruption policies that are effective even when the set of

potential whistleblowers is small.

We formalize the problem using a principal-agent-monitor framework in which the prin-

cipal relies on messages from a single informed monitor to target intervention against a

potentially corrupt agent.4 The difficulty is that the agent can credibly threaten to retaliate

against the whistleblower as a function of available observables — including the principal’s

own intervention behavior. We show that when the monitor is exogenously truthful, policies

in which the principal’s decision to intervene is more responsive to the monitor’s messages

naturally provide greater incentives for the agent to behave well. However, when messages

1For a review on the literature on whistleblowing originating in several social sciences, see Near and Miceli
(1995).

2In Kaplan and Schultz (2007), anonymous reporting channels fail to increase intention-to-report rates
relative to non-anonymous ones. Similarly, in Kaplan et al. (2009) external hotlines with stronger safeguards
do not elicit a higher propensity to report than internal hotlines with weaker safeguards.

3Other examples include judges and courtroom officials, fraudulent firms and their external accountants,
and bullying or harassment in small teams.

4Throughout the paper we refer to the misbehaving agent as “corrupt” and to the misbehavior as “cor-
ruption.” This is shorthand for any decision that the principal finds undesirable or harmful. Following
convention, we refer to the principal and monitor as she, and to the agent as he.
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are endogenous, making intervention responsive to the monitor’s message facilitates effec-

tive retaliation by misbehaving agents and limits information provision. This generates a

novel trade-off between eliciting information and using that information efficiently. In ad-

dition, this makes evaluating intervention policies difficult: imagine that no misbehavior

is reported; does this imply that there is no underlying corruption, or does it mean that

would-be whistleblowers are being silenced by threats and intimidation? We investigate the

relationship between the principal’s intervention rule, the agent’s misbehavior, and the mon-

itor’s whistleblowing, and suggest ways to identify effective intervention strategies using only

unverifiable reports.

Our modeling approach emphasizes three issues that are important in practical applica-

tions. First, we take seriously the idea that corrupt agents can undermine the effectiveness

of institutions by side-contracting with others who have information about them (i.e. the

monitor). In our model, this side-contracting takes the form of contingent retaliation pro-

files. Second, departing from much of the literature on collusion, we do not assume that

messages are verifiable, reflecting the fact that hard measures of corruption are rarely avail-

able.5 When it comes to anti-corruption policy, the outcome of interest need not be directly

measurable, and policies may have to be evaluated using soft, non-verifiable information.

Third, we do not assume that the principal has precise control over the payoffs of either

the agent or the monitor following intervention. Very often rewards and punishments are

determined by imperfect and stochastic institutional processes. For instance, whistleblower

protection schemes may not fully shield the monitor against ostracism, or harassment; sup-

posedly anonymous information may be leaked; the judiciary may fail to act against corrupt

agents, and so on.6 In fact, we do not assume that the principal has much information

about the payoffs of the monitor or the agent. We allow for rich heterogeneity in the players’

5See Bertrand et al. (2007) or Olken (2007) for innovative approaches to measuring corruption.
6As an example of a principal failing to fully protect whistleblowers, Miceli et al. (1999) show that reported

rates of retaliation against federal employees increased between 1980 and 1992 despite the tightening of
whistleblower protection laws.
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payoffs, including the possibility of “malicious” monitors who benefit from triggering inter-

vention against honest agents. As a result, the principal should be concerned that measures

taken to protect whistleblowers may end up empowering scoundrels.

We provide two sets of results. The first is that any effective intervention strategy fol-

lowed by the principal must limit its responsiveness to the monitor’s messages. Intuitively,

intervention strategies must offer sufficient plausible deniability to induce whistleblowing.

Indeed, consider an intervention strategy in which the principal launches an intervention if

and only if she receives a warning of corruption from the monitor. This intervention strategy

gives full information to the agent regarding the supposedly secret message that the monitor

sent and hence generates no plausible deniability. Such information allows the agent to com-

mit to very painful retaliation conditional on intervention and in equilibrium the monitor

never reports corruption. Consider instead a principal that follows a strategy with a base-

line rate of intervention, i.e. it launches interventions with positive probability even when

the monitor reports absence of corruption. In this case, upon observing intervention, the

agent cannot perfectly infer the content of the report. The monitor might not have been

the origin of an intervention, which makes retaliation costly on the equilibrium path. This

complicates the retaliation strategy and allows for truthful reporting in equilibrium. We

show that optimal intervention strategies always include a positive baseline rate of interven-

tion. In addition, we show that it is often optimal to intervene with probability less than

one against agents reported as corrupt. This allows to maintain plausible deniability while

reducing equilibrium intervention costs for the principal.

Our second set of results shows how to use equilibrium properties of corruption and re-

porting decisions to infer bounds on the underlying levels of corruption using non-verifiable

reports alone. We show that for any given type of agent, the region of the intervention-

strategy space in which corruption occurs is star-shaped around the origin. Moreover,

keeping corruption behavior constant, the messages sent by monitors depend only on the

information content of intervention (the ratio of intervention rates conditional on the two
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possible messages), and not on the intensity of intervention (the absolute values of these

intervention rates). Using these properties, we show that policy experiments which vary the

level of intensity while keeping the information content of intervention constant yield useful

bounds on unobservable corruption. These bounds can be used for prior-free policy de-

sign and suggest the following rule-of-thumb: first provide enough plausible deniability that

monitors are willing to complain, and then scale up intensity while keeping the information

content of intervention constant.

This paper contributes to a growing effort to understand the effectiveness of counter-

corruption measures, a topic at the forefront of recent governance initiatives by the World

Bank, the OECD and the United Nations. Growing microeconomic evidence from developing

countries confirms the importance of corruption issues affecting public service provision in

education or health (see Olken and Pande (2012) and Banerjee et al. (2012) for recent

reviews). A key aspect of corruption is that although there is strong suspicion that it is

occurring, there is generally little direct and actionable evidence flowing back to the relevant

principals. Addressing explicit or implicit threats of retaliation is likely essential to ensure

proper information flows.7 We show that even without anonymity, correct policy design can

keep information channels open under these threats. Relying on robust implications from

our structural model, we also provide a method to measure underlying corruption and guide

policy elaboration using only unverifiable report data. In this respect, we contribute to a

growing literature which takes a structural approach to experiment design in order to make

inferences about unobservables.8

This paper also contributes to the contract theory literature on collusion in organizations

(see for instance Tirole (1986), Laffont and Martimort (1997, 2000), Prendergast (2000), or

7See for instance Ensminger (2013) who emphasizes the role of threats and failed information channels
in recent corruption scandals affecting community-driven development projects. Also, in a discussion of why
citizens fail to complain about poor public service, Banerjee and Duflo (2006) suggest that “the beneficiaries
of education and health services are likely to be socially inferior to the teacher or healthcare worker, and a
government worker may have some power to retaliate against them.”

8See for instance Karlan and Zinman (2009) or Chassang et al. (2012).
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Faure-Grimaud et al. (2003)). Our insight is that whenever collusion is an issue, then it will

be in the principal’s interest to make side-contracting between the agent and the monitor

difficult. The forces that make contracting difficult are well known: adverse selection and

moral hazard. Here we focus on the latter, and show how the principal can make the agent’s

own incentive provision problem more difficult by garbling the content of the monitor’s

messages.9 This creates a novel practical rationale for the use of random mechanisms, and

we believe that this simple idea has applications in other settings, for instance to fight

collusion in auctions.10 Our paper also emphasizes a novel set of questions in this literature.

Rather than solving for optimal contracts in a Bayesian environment, we study the inference

of unobserved but payoff-relevant behavior, and the extent to which unverifiable message

data can be used for prior-free policy design.11

Finally, our work is related to that of Myerson (1986) or more recently Rahman (2012)

who consider mechanism design problems with non-verifiable reports, and emphasize the

value of random recommendation-based incentives to jointly incentivize multiple agents, and

in particular to incentivize both effort provision and the costly monitoring of effort. The

key difference is that this strand of literature excludes the possibility of side contracting

between players. As a result, the role of mixed strategies in our work is entirely different:

monitoring itself is costless and randomization occurs only to garble the information content

of the principal’s intervention behavior and make side-contracting between the agent and

the monitor difficult.12 Our work also shares much of its motivation with the seminal work

of Warner (1965) on the role of plausible deniability in survey design, and the recent work

9This echoes the point made by Dal Bó (2007) in a legislative context, that making votes anonymous can
help prevent influence activities and vote-buying.

10Specifically, our approach suggests garbling the selection of the winner(s). Although there is an active
theoretical and empirical literature on collusion in auctions — see, among others, Skrzypacz and Hopenhayn
(2004), Che and Kim (2006, 2009) or Asker (2010) — we believe this point has yet to be made.

11Our frequentist data-driven approach to policy elaboration fits in growing body of work on non-Bayesian
mechanism design. See for instance Hurwicz and Shapiro (1978), Segal (2003), Hartline and Roughgarden
(2008), Madarász and Prat (2010), Chassang (2013), Frankel (2014), Carroll (2013).

12Eeckhout et al. (2010) propose a different theory of optimal random intervention based on budget
constraints, and non-linear responses of criminal behavior to the likelihood of enforcement.
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of Izmalkov et al. (2011), Ghosh and Roth (2010), Nissim et al. (2011), or Gradwohl (2012)

on privacy in mechanism design.

The paper is structured as follows: Section 2 introduces our framework and presents the

main points of our analysis in the context of a simple example; Section 3 introduces our

general framework; Section 4 establishes robust properties of corruption and reporting in

equilibrium, and shows how they can be exploited to form estimates of underlying corruption

levels as well as make policy recommendations; Section 5 concludes with a discussion of

potential implementation challenges. Appendix A presents several extensions, covering the

case of multiple monitors, as well as short-term out-of-equilibrium inference. Proofs are

contained in Appendix B.

2 The Basic Model

This section introduces our framework and illustrates the mechanics of corruption, intimi-

dation and whistleblowing through a simple but detailed example. In the interest of clarity,

we make restrictive assumptions which are relaxed in Sections 3 and 4.

Note that our framework makes conscious modeling choices which demand some motiva-

tion. Specifically, the principal has very limited control over the payoffs of various parties,

capturing the fact that punishment must often go through an external judiciary process. We

provide such motivation in Section 2.2 after laying out the structure of the game.

2.1 Setup

Players, timing, and actions. There are three players: a principal P , an agent A and a

monitor M .13 The timing of actions is as follows.

1. The agent chooses whether to be corrupt (c = 1) or not (c = 0). The monitor observes

13See Appendix A for an extension to the case of multiple monitors.
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corruption c and sends a message m ∈ {0, 1} to the principal.14

2. The principal observes the monitor’s message m and triggers an intervention (i = 1)

or not (i = 0). Intervention has payoff consequences for the principal, the agent, and

the monitor that are detailed below.

3. The agent can retaliate with intensity r ∈ [0,+∞) against the monitor.

This timing of actions is associated with a specific commitment structure. The principal

commits to an intervention policy first. After observing the principal’s policy, the agent

commits to a retaliation strategy.

Observables and reduced-form payoffs. The monitor costlessly observes the agent’s

corruption decision c ∈ {0, 1}, and can send a message m ∈ {0, 1} to the otherwise unin-

formed principal. The agent does not observe the monitor’s message m, but observes whether

the principal triggers an intervention i ∈ {0, 1}.15 We assume in this section (but not others)

that payoffs are common-knowledge.

As a function of corruption c ∈ {0, 1}, intervention i ∈ {0, 1} and retaliation intensity

r ≥ 0, payoffs uA, uP and uM to the agent, principal and monitor take the form

uM = πM × c+ vM(c,m)× i− r

uA = πA × c+ vA(c)× i− kA(r)

uP = πP × c+ vP (c)× i

where πM , πA, and πP capture the expected payoff consequences of corruption, vM , vA, and

14In this simple setting, this binary message space is without loss of efficiency: collecting messages from
the agent, or richer messages from the monitor (for instance about threats of retaliation) is not helpful. See
Appendix B, Lemma B.1 for details.

15Our general framework allows the agent to observe leaks from the institutional process that can be
informative of the message m sent by the monitor.
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vP capture reduced-form expected payoff consequences associated with intervention.16 The

level of retaliation imposed by the agent on the monitor is denoted by r, and kA(r) is the

cost of such retaliation to the agent. Payoffs conditional on corruption are such that πA > 0

and πP < 0. The cost of retaliation kA(r) is strictly increasing in r, with kA(0) = 0. We

make the following assumption.

Assumption 1. Expected continuation payoffs following intervention (i = 1) satisfy

∀m ∈ {0, 1}, vM(c = 0,m) < 0 (non-malicious monitor);

πA + vA(c = 1) < vA(c = 0) = 0 (effective intervention);

πP ≤ vP (c = 0) < 0 (optimality of intervention);

∀c ∈ {0, 1}, vM(c,m 6= c) ≤ vM(c,m = c) (weak preference for the truth);

The first three assumptions are made for simplicity and are relaxed in our general anal-

ysis. The assumption that there are no malicious monitors requires that the monitor gets

a negative continuation payoff vM(c = 0,m) < 0 following intervention on an honest agent;

effective intervention requires that intervention does not hurt the agent if he is honest, and

hurts him sufficiently when dishonest to dissuade corruption; optimality of intervention guar-

antees that it is always optimal for the principal to pick an intervention profile that induces

the agent to be honest. The last assumption (weak preference for the truth) is maintained

throughout the paper. We assume that taking intervention as given, the monitor is weakly

better off telling the truth. This assumption gives an operational meaning to messages

m ∈ {0, 1}, and typically comes for free in direct mechanism design problems.

Strategies and commitment. Both the principal and the agent can commit to strategies

ex ante. Though we do not provide explicit micro-foundations, we think of this commitment

power as either arising from reputational concerns, or being enforced by institutions. The

16As we discuss in Section 2.2, if the principal has some control over the rewards and punishments at-
tributed to the agent and the monitor, these reduced-form payoffs can be thought of as endogenously arising
from a first-stage optimization.
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principal is the first mover and commits to an intervention policy σ : m ∈ {0, 1} 7→ σm ∈

[0, 1], where σm ≡ prob(i = 1|m) is the likelihood of intervention given messagem.17 Without

loss of generality, we focus on strategies such that σ1 ≥ σ0.18

Knowing the principal’s intervention strategy σ, the agent takes a corruption decision

c ∈ {0, 1} and commits to a retaliation policy r : i ∈ {0, 1} 7→ r(i) ∈ [0,+∞) as a func-

tion of whether or not he observes intervention. The monitor moves last and chooses the

message m ∈ {0, 1} maximizing her payoffs given the strategic commitments of both the

principal and the agent.19 Note that we assume that retaliation, rather than payments, is

the side-contracting instrument available to the agent, and this plays an important role in

the analysis.20

We are interested in characterizing patterns of corruption and information transmission

as a function of the principal’s intervention policy σ. We also solve for the principal’s optimal

policy and show that it must be interior. For simplicity, we assume throughout the paper that

whenever the agent is indifferent, he chooses to not be corrupt, and whenever the monitor

is indifferent, she reveals the truth. This convention does not matter for any of our results.

2.2 Motivation

Retaliation and failure of anonymity. Our model is tailored to capture the mechanics

of corruption and whistleblowing in specific settings: (1) first there must be significant infor-

mation about corrupt agents which the principal wants to obtain; (2) the set of individuals

who have this information and are able to pass it on to the principal is small, or can be iden-

17We assume that the principal can commit to using a mixed strategy. Section 5 discusses credible ways
for the principal to do so. In particular, we suggest that mixing can be achieved by garbling the messages
provided by the monitor directly at the surveying stage, before it even reaches the principal.

18See Appendix B, Lemma B.1 for details.
19The order of moves is essential for the analysis. Intuitively, it reflects the various parties’ ability to make

more or less public commitments. The principal can make fully public commitments, whereas the agent can
only commit vis-à-vis the monitor: fully public commitments to retaliate would be directly incriminating.

20See Appendix A for a detailed discussion, as well as sufficient conditions for this to be optimal even if
side-payments are available, building on the fact that rewards must be paid on the equilibrium path.
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tified ex post by the agent; (3) the agent is able to retaliate (at least with some probability)

even following intervention. We believe many environments exhibit these features.

Actions that we label as corrupt include bribe collection by state officials, arrangements

between police officers or judges and organized crime, fraud by sub-contractors in public

good projects, or breach of fiduciary duty by a firm’s top executives.21 Retaliation can

also take several forms: an honest bureaucrat may be socially excluded by his colleagues

and denied promotion; whistleblowers may be harrassed, see their careers derailed, or get

sued for defamation; police officers suspected of collaborating with Internal Affairs may have

their life threatened by lack of prompt support.22 Finally, the interventions available to

the principal will also vary across contexts. A police department might launch a targeted

Internal Affairs investigation, while the board of a company can demand additional checks

on the company’s books or can bring some suspicion of irregularity or improper conduct to

the criminal justice system.

In all of these cases only a few colleagues, subordinates, or frequent associates are in-

formed about the agent’s misbehavior, making anonymity ineffective. Note that even when

several monitors have information, group punishments may be used. For instance, entire

communities may be denied access to public services following complaints to authorities.23

In addition, monitors may fear that anonymity is not properly ensured and that imperfect

institutions may leak the source of complaints to the agent or one of his associates. In hier-

archical 360◦ evaluations, subordinates may not be willing to complain about their superior

to their superior’s boss if they worry that the two may share information.

21Again, we emphasize that here “corruption” really covers any behavior that the principal finds undesir-
able, such as “shirking” in a typical principal-agent model

22See Punch (2009) for examples of punishment of informants in a study of police corruption. In the
National Business Ethics Survey 2013, 21% of whistleblowers report suffering several forms of retribution
despite the legal and institutional protection available.

23For instance, Ensminger (2013) suggests that egregious corruption affecting the World Bank’s arid land
program were not reported by the local Kenyan communities that suffered from it for fear of being cut off
from subsequent projects.
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Reduced-form payoffs. Our decision to eschew endogenizing payoffs reflects what we

perceive as great heterogeneity in the ability of principals to reliably affect the payoffs of

involved parties. While payoffs are a first order determinant of behavior, they are rarely

available as policy instruments. Even powerful international organizations such as the World

Bank need to go through local, possibly faulty, judiciary systems to target corrupt agents.

This severely constrains the World Bank’s ability to precisely tailor the intensity of rewards

and punishments. For this reason, we choose to focus on the decision to trigger intervention,

in whatever form it may take, as our main policy dimension of interest.

Still, it is important to note that while we take payoffs upon intervention as exogenous,

this does not mean that our approach is inconsistent with a broader mechanism design

problem in which payoffs upon intervention vA and vM are also policy instruments available

to the principal.24 Indeed, we place few restrictions on reduced-form payoffs, and they can be

thought of as being determined in a first optimization stage, before determining intervention

patterns σ. This is especially true in the more general framework of Section 3.

More formally, if V denotes the set of feasible payoff structures v ≡ (vA, vM), Σ the

set of possible intervention policies σ, and c∗(v, σ) an appropriate selection of the agent’s

equilibrium behavior under payoff structure v and policy σ, the principal can be thought of

as solving

max
v∈V,σ∈Σ

E[uP |σ, c∗(v, σ)] = max
v∈V

max
σ∈Σ

E[uP |σ, c∗(v, σ)].

Provided that payoffs in V satisfy Assumption 1 (or the more general assumption made

in Section 3), our analysis applies as a second stage within the broader mechanism design

problem in which payoffs are endogenously determined by the principal. For instance, our

reduced-form payoffs capture schemes under which the monitor receives reward (vM(c =

1,m = 1) > 0) for correctly informing the principal that the agent is corrupt, and is instead

punished for erroneous statements (vM(c,m 6= c) ≤ 0).

24See Basu et al. (2014) for a proposal on how to use such instruments, and an account of the real life
controversy it can cause.
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2.3 The Trade-off Between Eliciting and Using Information

To frame the analysis, it is useful to contrast the effectiveness of intervention policies when

messages are exogenously informative, i.e. when the monitor is an automaton with strategy

m(c) = c, and when messages are endogenous.

Lemma 1 (basic trade-off). The following results hold:

(i) If messages are exogenously informative, i.e. m(c) = c, setting σ0 = 0 and

σ1 = 1 is an optimal policy. There is no corruption and no retaliation in equilib-

rium.

(ii) If messages are endogenous, there exists λ > 1 such that for any intervention

policy σ satisfying σ1
σ0
≥ λ,

• the agent is corrupt and commits to retaliate conditional on intervention;

• the monitor sends message m = 0.

Point (i) follows from Assumption 1, which ensures that the agent refrains from corruption

if intervention occurs with high enough probability. Since messages are exogenous (the

monitor is an automaton compelled to tell the truth), intervention can be fully responsive to

the monitor’s message: doing so provide the strongest incentives for the agent to be honest,

and avoids costly intervention on the equilibrium path.

Point (ii) shows that this is no longer the case when messages are endogenous and the

monitor can be deterred from truthful reporting. In this case, when the likelihood ratio of

intervention rates λ ≡ σ1
σ0

is high, intervention itself becomes a very informative signal of

which message the monitor sent. When λ is too high, the agent can dissuade the monitor to

send message m = 1 while keeping equilibrium retaliation costs low, simply by threatening

the monitor with high levels of retaliation conditional on intervention. Facing this retaliation

strategy, the monitor always sends message m = 0.
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A basic implication is that a strictly positive baseline rate of intervention σ0 > 0 is needed

to ensure that information will flow from the monitor to the principal. This provides the

monitor with plausible deniability should her message lead to an intervention. This makes

incentive provision by the agent harder, since costly retaliation must be carried out with

positive probability in equilibrium.

A concrete example. We provide a concrete example inspired by recent changes in British

accounting-oversight policy.25 We emphasize that our goal is purely illustrative. We seek

to clarify the mechanics at work behind Lemma 1 using a plausible, realistic context as an

example.

Before 2004, the UK’s Financial Reporting Review Panel (FRRP) — the regulatory

authority in charge of investigating the accounts of publicly owned firms — used a purely

reactive investigation policy. Investigations were only conducted in response to complaints

filed by credible agents. In our terminology, baseline investigation rate σ0 was set to 0, while

investigation following a complaint σ1, was set to one.

Since the natural monitor of a firm’s aggregate accounting behavior is the firm’s own

auditor, our model suggests that this intervention policy made whistleblowing difficult. Fol-

lowing intervention by the FRRP the firm would know that its auditor must have reported

it. This would likely jeopardize continued business between the firm and its auditor.

Consitent with a public annoucement made in 2004, the FRRP changed its investigation

policy starting in 2005 (Financial Reporting Council, 2004). Instead of relying only on

complaints, the FRRP started pro-actively investigating a significant number of firms on

an discretionary basis, whether complaints were filed or not. Credible complaints continued

to be investigated as before. In our terminology, this means that the FRRP’s new policy

provided auditors with plausible deniability. Should a firm be investigated, it cannot know

for certain that its auditor reported it.

25We are grateful to Hans Christensen for suggesting this example.
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The data, summarized in Figure 1, is consistent with our model.26 Under the purely

reactive policy, from 1999 to 2004, an average of 4 complaints a year were submitted to the

FRRP. Under the pro-active policy, from 2005 to 2011, an average of 50 complaints a year

were submitted to the regulator.27
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Figure 1: Number of complaints submitted to the FRRP, under reactive and proactive
policies.

2.4 Intervention, Reporting and Corruption

We now study in greater detail the patterns of corruption and information flow as a function

of intervention policy σ. Our goal is to characterize optimal policies, as well as clarify the

relationship between observable (but unverifiable) messages and true underlying corruption.

Reporting by the monitor. We begin by clarifying the conditions under which the

monitor reports corruption. Fix an intervention profile σ = (σ0, σ1), with σ0 < σ1, and a

26Of course the data may well be consistent with other models, we make no claim to identification.
27The data is obtained from Brown and Tarca (2007) for years 1999 to 2004, and from the Financial

Reporting Review Panel (2005–2011) for years 2005 to 2011.
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level of retaliation r conditional on intervention.

We first note that when the agent is not corrupt (c = 0), it is optimal for the monitor

to send message m = 0 regardless of retaliation level r.28 Indeed, given c = 0, her expected

payoffs conditional on messages m = 1 and m = 0 necessarily satisfy

E[uA|m = 1] = σ1[vM(c = 0,m = 1)− r] ≤ σ0[vM(c = 0,m = 0)− r] = E[uA|m = 0].

Consider now the case where the agent chooses to be corrupt, i.e. c = 1. The monitor

will report corruption and send message m = 1 if and only if

σ1[vM(c = 1,m = 1)− r] ≥ σ0[vM(c = 1,m = 0)− r].

This holds whenever

r ≤ rσ ≡
[
σ1vM(c = 1,m = 1)− σ0vM(c = 1,m = 0)

σ1 − σ0

]+

(1)

where x+ ≡ max{x, 0} by convention. This expression gives us the minimum level of retali-

ation that the agent must commit to in order to obtain the silence of the monitor.

Note that whenever vM(c = 1,m = 1) < 0 (i.e. the monitor suffers from intervention

against a corrupt agent), there will be intervention profiles σ such that rσ = 0: the monitor

prefers to send message m = 0 even in the absence of retaliation. This possibility is a concern

in the context of foreign aid if corruption scandals cause aid to be withheld (Ensminger,

2013).

Information manipulation and corruption. We now characterize the agent’s decisions.

First note that a non-corrupt agent will always find it optimal to set retaliation level r = 0,

28This relies on the assumption that the monitor is non-malicious. We relax the assumption in the next
section
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since in this case monitors always spontaneously send message m = 0.29

Consider now the agent’s incentives to influence reporting conditional on being corrupt

(c = 1). Dissuasive retaliation rσ can be expressed as a function of likelihood ratio λ ≡ σ1
σ0

:

rσ = rλ ≡
[
λvM(c = 1,m = 1)− vM(c = 1,m = 0)

λ− 1

]+

.

Note that retaliation level rλ is decreasing in λ: when the information content of intervention

is large, moderate threats of retaliation are sufficient to shut down reporting.

Since retaliation r is costly to the agent, he either picks r = 0 and lets the monitor send

her preferred message, or picks r = rσ and thus induces message m = 0 at the lowest possible

cost. Hence, a corrupt agent induces message m = 0 through the threat of retaliation if and

only if:

σ1vA(c = 1) ≤ σ0[vA(c = 1)− kA(rσ)]

⇐⇒ λvA(c = 1) ≤ vA(c = 1)− kA(rλ). (2)

This implies that when the information content of intervention λ is high, the agent will

induce message m = 0, and there will be unreported corruption.

Lemma 2 (unreported corruption). There exists λ0 ≥ 1 such that a corrupt agent induces

message m = 0 if and only if σ1
σ0
> λ0.

Finally, we examine the agent’s decision to engage in corruption. The agent chooses to

be corrupt if and only if

σ0vA(c = 0) < πA + max{σ1vA(c = 1), σ0[vA(c = 1)− kA(rσ)]}. (3)

Optimal intervention. It is now straightforward to characterize the optimal intervention

profile, using the assumption that vA(c = 0) = 0.

29Again, this relies on monitors being non-malicious. When the monitor is malicious (vM (c = 0,m = 1) >
0), even honest agents may need to use threats to ensure that message m = 0 is sent.
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Proposition 1 (optimal intervention). The optimal intervention profile σ∗ satisfies (2) and

(3) with equality:

σ∗1 =
πA

−vA(c = 1)
and σ∗0 =

σ∗1
λ0

.

Intervention profile σ∗ is interior: σ∗0 ∈ (0, 1) and σ∗1 ∈ (0, 1). Under policy σ∗, there is no

corruption and no retaliation on the equilibrium path.

One notable property of the optimal intervention strategy is that it involves interior rates

of intervention conditional on both message m = 0 and message m = 1. Lemma 1 established

that the principal must set σ∗0 > 0 to provide plausible deniability. Setting σ∗1 < 1 serves

to lower baseline intervention rate σ0, while keeping the likelihood-ratio of intervention σ1
σ0

constant. This reduces the equilibrium cost of the strategy, which only depends on σ0 in

equilibrium, since the agent is deterred from corruption.

Patterns of corruption and reporting implied by conditions (2) and (3) are illustrated in

Figure 2. The optimal profile is in the lower left-hand corner of the no-corruption region. It

is the no-corruption profile consistent with the lowest baseline intervention rate σ0.

Figure 2: corruption and messages (c,m) as a function of intervention profiles (σ0, σ1); payoff
specification πA = 5, vA(c) = −10c, vM(c,m) = −2 + c(3 + 3m), kA(r) = 20r.
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2.5 Inference, and data-driven policy design

Consider now a situation in which the principal does not know the underlying parameters

that characterize the preferences of agents and monitors, but knows they satisfy Assumption

1. We ask whether it is possible to make inferences about underlying corruption c on the basis

of unverifiable messages m alone. It turns out that even though messages are unverifiable and

unreported corruption is always a possibility, variation in messages across different policy

choices provides sharp information about the underlying levels of corruption.

Consider two different intervention profiles which we call old and new, σO and σN , such

that

σO0 < σN0 , σO1 ≤ σN1 , and λN =
σN1
σN0
≤ σO1
σO0

= λO. (4)

We think of these two intervention profiles as policy experiments implemented on different

subsamples of a population of identical agents and monitors.30 Intervention profile σN in-

volves a strictly higher frequency of intervention than σO while having a lower information

content of intervention λN ≤ λO. As a result it may reasonably be expected to yield both

less corruption and more reliable messages. Let cO, cN and mO, mN denote the respective

corruption and reporting decisions in equilibrium conditional on σO and σN .

Proposition 2. For every pair of policies σO, σN satisfying (4)

cO ≥ mO; (5)

cO ≥ cN ; (6)

mO > mN ⇒ cO > cN . (7)

Inequality (5) tells us that reported corruption is always a weak underestimate of true

corruption. Inequality (6) implies that increasing the frequency of intervention while de-

30Taking seriously this population view of the agency problem, we allow for heterogeneity across agents
and monitors in Sections 3 and 4.
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creasing the information content of intervention must reduce corruption. Finally, inequality

(7) shows that for such policy changes, drops in reported corruption are a reliable indicator

of drops in true corruption.

Proposition 2 implies that messages and changes in messages can be used to make sharp

inferences about underlying levels of corruption. A corollary is that one can identify the

optimal intervention policy using unverifiable message data. Denote by m∗(σ) equilibrium

reports at policy profile σ.

Corollary 1. The optimal policy σ∗ solves

min
σN
{σN0 | with σN s.t. m∗(σN) = 0 and ∃σO satisfying (4) s.t. m∗(σO) = 1}. (8)

In words, the optimal policy is the one that requires the lowest level of baseline interven-

tion σ∗0 consistent with: (1) message m = 0 is sent at σ∗; (2) message m = 1 is sent at an

intervention profile that involves less frequent intervention and a higher information content

of intervention λ. Requirement (2) ensures that there is no unreported corruption occurring

at σ∗ and that reports of no-corruption from requirment (1) can be trusted.

2.6 Fragility

The properties highlighted in Proposition 2 and Corollary 1 are intuitive. Maintaining or

increasing intervention levels, greater plausible deniability should diminish corruption. Once

there is sufficient plausible deniability that monitors report corruption, drops in reported

corruption should be reliable. Unfortunately, it turns out that these useful properties do not

extend to general environments.

Consider policies σO and σN satisfying (4). The following outcomes are possible under

models relaxing Assumption 1.

Discouraging the honest. If vA(c = 0) < 0, i.e. intervention is costly to an honest agent,
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it may be that corruption increases with policy σN (i.e. cO = 0 < cN = 1). This

happens if corrupt agents are being reported under σO. In this case increasing baseline

intervention rate σ0 does not affect the payoff of corrupt agents but diminishes that of

honest ones.

Empowering the scoundrels. If vM(c = 0,m = 1) > 0, i.e. the monitor is malicious and

benefits from intervention against non-corrupt agents, it may be that cO < mO (there

is over-reporting) and that mO > mN 6⇒ cO > cN (drops in complaints do not imply

drops in corruption). Indeed, greater plausible deniability may help malicious monitors

send inaccurate messages about honest agents.

Unreliable drops in reports. With malicious monitors and uncertainty over payoffs, it

may be that E[mO] > E[mN ] and E[cO] < E[cN ], i.e. drops in complaints are unreliable:

average complaint rates can decrease while underlying levels of corruption increase.

Appendix A delineates examples illustrating these different possibilities.

The rest of the paper considers a general framework which allows us to tackle the chal-

lenge of inference from unverifiable messages head-on. Unexpectedly, we are able to provide

suitable versions of Proposition 2 and Corollary 1 that hold under very general assumptions.

3 General Framework

We generalize the framework of Section 2 in three important ways: first, we allow for arbitrary

incomplete information over the types of the agent and the monitor; second we allow for the

possibility of malicious monitors, i.e. monitors who benefit from intervention against an

honest agent; third we allow for the possibility of leaks which may reveal information over

messages sent by the monitor following intervention.
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Types. Payoffs take the same general form as in Section 2, but we relax the complete

information assumption of Section 2 and allow for rich incomplete information. Monitors and

agents have types τ = (τM , τA) ∈ TM × TA = T such that the monitor’s type τM determines

her payoffs (πM , vM), while the agent’s type τA determines both his payoffs (πA, vA, kA), and

his belief over the type τM of the monitor, which we denote by Φ(τM |τA) ∈ ∆(TM). We

assume that TM is a compact subset of Rn. The only assumptions imposed on the model are

the following common knowledge restriction on payoffs.

Assumption 2 (general payoffs). It is common-knowledge that payoffs satisfy

πA ≥ 0;

∀c ∈ {0, 1}, vA(c) ≤ 0;

∀c ∈ {0, 1}, vM(c,m = c) ≥ vM(c,m 6= c).

We note that under Assumption 2: a positive mass of agents may get no benefits from

corruption (πA = 0); the certainty of intervention need not dissuade corruption (πA+vA(c =

1) > vA(c = 0)); monitors may be malicious, meaning that they benefit from intervention

happening against an honest agent (vM(c = 0,m = 1) > 0). We continue to assume that

conditional on intervention, monitors have weak preferences for telling the truth, and consider

policy profiles such that σ1 ≥ σ0.

We denote by µT ∈ ∆(T ) the true distribution of types τ ∈ T in the population. Dis-

tribution µT may exhibit arbitrary correlation between the types of the monitor and the

agent, and is unknown to the principal. We think of this underlying population as a large

population from which it is possible to sample independent (agent, monitor) pairs.

Leaks. We generalize the assumption that the agent can observe the principal’s interven-

tion decisions. The agent now observes an abstract signal z ∈ Z ∪ {∅} on which he can

condition his retaliation policy. We think of signal z as a potential leak from the institu-
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tional process triggered by intervention. We assume that z = ∅ conditional on no intervention

and follows some distribution F (·|m, c) conditional on intervention. Note that ∅ remains a

possible outcome conditional on intervention.

The only restriction we impose on F is that for all c ∈ {0, 1},

probF (z = ∅|m = 0, c) ≥ probF (z = ∅|m = 1, c),

that is, message m = 1 is more likely to lead to informational leaks.

The structure of leaks ensures that in equilibrium, retaliation only occurs if intervention

has been triggered. Allowing for leaks makes our analysis applicable to settings in which

investigating institutions are not entirely trustworthy, resulting in information being revealed

to the agent. Note that since leaks are possible, the principal has only limited commitment

power and the revelation principle does not apply.31 This is inherently an indirect mechanism

design problem where messages have hard-wired institutional meaning.

4 Patterns of Corruption and Reporting

4.1 The Basic Trade-off

The basic trade-off between using information efficiently and keeping information channels

open is the same as in Section 2. Denote by c∗(σ, τA) the optimal corruption decision by an

agent of type τA under policy σ, and by m∗(σ, τ) the optimal message sent by a monitor

of type τM facing an agent of type τA under policy σ. As before, let λ = σ1
σ0

denote the

likelihood ratio of intervention rates. Lemma 1 extends as follows.

Proposition 3. Assume that messages are exogenously informative, i.e. that the monitor

is an automaton following strategy m(c) = c. Any optimal intervention profile σ∗ 6= 0 must

31See Bester and Strausz (2001) for a partial extension of the revelation principle in principal-agent settings
where the principal does not have commitment power. Note that in our setting leaks are not under the control
of the principal.
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be such that σ∗0 = 0 and σ∗1 ≥ 0.32

If instead messages are endogenous, we have that

lim inf
λ→∞

∫
TA

c∗(σ, τA)dµT (τA) ≥ probµT (πA > 0);

∀τA s.t. vA(·) < 0, lim
λ→∞

∫
TM

m∗(σ, τ)dΦ(τM |τA) = 0.

This proposition shows that as λ = σ1
σ0

gets arbitrarily large, all agents with strictly

positive value for being corrupt choose to be corrupt, and all agents who suffer strictly from

intervention shut down reporting (from both malicious and non-malicious monitors).

4.2 The Geometry of Corruption and Reporting

Consider a given agent of type τA. Without loss of generality, we can restrict attention to

retaliation schemes that involve retaliation r(z) > 0 only conditional on intervention leading

to some information leak, i.e. z 6= ∅.33

A retaliation profile r : Z → [0,+∞) and a corruption decision c induce a messaging

profile m : TM → {0, 1} such that for all τM ∈ TM ,

m(τM) ∈ arg max
m̂∈{0,1}

σm̂[vM(c, m̂)− E(r|c, m̂)]. (9)

We denote by M = {0, 1}TM the set of message profiles, and for any message m ∈ {0, 1}

define ¬m to be the other message. For any corruption decision c, and any message profile

32The optimal intervention policy σ∗ may be equal to zero if the equilibrium cost of intervention overwhelms
the gains from dissuading corruption.

33See Lemma B.2 for a proof.

24



m ∈M, consider the normalized cost KτA
c,m(σ) of implementing report profile m defined by

KτA
c,m(σ) ≡ 1

σ0

inf
r:Z→[0,+∞)

∫
Z×TM

σm(τM )kA(r(z))dF (z|c,m(τM))dΦ(τM |τA) (10)

s.t. ∀τM , m ≡m(τM) satisfies,

σm [E(vM |m, c)− E(r|m, c)] ≥ σ¬m [E(vM |¬m, c)− E(r|¬m, c)]

By convention, this cost is infinite whenever message profile m is not implementable, i.e.

when there is no retaliation profile r such that (9) holds for all τM ∈ TM . Noting that for

all m ∈ {0, 1}, σm
σ0

= λm and σm
σ¬m

= λ2m−1, it follows that the cost KτA
c,m(σ) of implementing

message profile m can expressed as a function KτA
c,m(λ) of the likelihood ratio λ of intervention

rates. Altogether, an agent with type τA will choose to be honest if and only if

πA + σ0 sup
m∈M

{∫
TM

λm(τM )vA(c = 1)dΦ(τM |τA)−KτA
c=1,m(λ)

}
≤ σ0 sup

m∈M

{∫
TM

λm(τM )vA(c = 0)dΦ(τM |τA)−KτA
c=0,m(λ)

}
. (11)

This implies several useful properties of corruption and reporting decisions in equilibrium.

Proposition 4 (patterns of manipulation and corruption). (i) Pick an agent of

type τA and consider old and new intervention profiles σO, σN such that σO =

ρσN , with ρ > 0. Denote by cO, cN and mO,mN the corruption decisions and

message profiles implemented by the agent in equilibrium at σO and σN . If cO =

cN , then mO = mN .

(ii) Consider an agent of type τA. The set of intervention profiles σ such that

the agent chooses to be corrupt is star-shaped around (0, 0): if c∗(σ, τA) = 1, then

c∗(ρσ, τA) = 1 for all ρ ∈ [0, 1].

(iii) Fix the ratio of intervention rates λ ≥ 1 and consider the ray {(σ0, λσ0) with σ0 ∈
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[0, 1]}. Along this ray, under the true distribution µT , the mass of corrupt agents

∫
TA

c∗(σ, τA)dµT (τA)

is decreasing in baseline intervention rate σ0.

In words, point (i) states that whenever intervention profiles have the same information

content λ, message profiles change if and only if the underlying corruption behavior of the

agent changes. Points (ii) and (iii) show that keeping the information content of intervention

λ constant, agents are less likely to be corrupt as the intensity of intervention increases.

4.3 Inference and Policy Evaluation from Unverifiable Reports

We now investigate the extent to which unverifiable reports can be used to make inferences

about the underlying level of corruption, and to inform policy choices. Note that the only

data observable to the principal is the aggregate mass of corruption messages

∫
T

m∗(σ, τ)dµT (τ).

We first highlight that in our rich environment, unverifiable messages at a single policy profile

σ imply no restrictions on underlying levels of corruption.

Proposition 5. Take as given any interior policy profile σ, and a true distribution µT

yielding aggregate complaint rate
∫
T

m∗(σ, τ)dµT (τ). We have that

{∫
T

c∗(σ, τA)dµ̂T (τ), for µ̂T s.t

∫
T

m∗(σ, τ)dµ̂T (τ) =

∫
T

m∗(σ, τ)dµT (τ)

}
= [0, 1].

In words, given a single policy profile, any observable level of aggregate complaints is

compatible with any arbitrary underlying degree of corruption. The degrees of freedom of

our general model can rationalize arbitrary patterns of true and reported corruption. Reports

26



at a single policy profile are uninformative.

We now show that suitable variation in policy profiles allows us to make inferences re-

garding true corruption using only unverifiable messages.

Proposition 6. Consider policies σO and σN such that σN = ρσO, with ρ > 1. For all

possible true distributions µT ∈ ∆(T ), we have that

∫
T

[
c∗(σO, τA)− c∗(σN , τA)

]
dµT (τ) ≥

∣∣∣∣∫
T

[m∗(σN , τ)−m∗(σO, τ)]dµT (τ)

∣∣∣∣ .
In words, when policy profiles move along a ray (i.e. keep the information content

of intervention constant), observable changes in message patterns provide a lower bound

for changes in underlying levels of corruption. An immediate corollary is that changes in

aggregate complaint levels
∣∣∫
T

[m∗(σN , τ)−m∗(σO, τ)]dµT (τ)
∣∣ provide a lower bound for

both the mass
∫
T

[1 − c∗(σN , τA)]dµT (τ) of honest agents at policy σN as well as a lower

bound for the mass
∫
T
c∗(σO, τA)dµT (τ) of corrupt agents at policy σO.

We now show that Proposition 6 can be used to inform policy design. Imagine that

some set of policy experiments σ ∈ Σ can be performed, where Σ is a set of feasible policy

profiles. Proposition 6 suggests the following heuristic to specify intervention policies. Define

vP = minc∈{0,1} vP (c), and denote by Ĉ : [0, 1]2 → [0, 1] the function defined by

∀σ ∈ [0, 1]2, Ĉ(σ) ≡ 1−max

{∣∣∣∣∫
T

[m∗(σ, τ)−m∗(σ′, τ)]dµT (τ)

∣∣∣∣
∣∣∣∣∣σ′ ∈ Σ ∩ {ρσ|ρ ∈ [0, 1]}

}
.

From Proposition 6 we know that Ĉ(σ) is an upper bound to the amount of underlying

corruption at σ. Noting that for a given intervention profile σ, the principal’s payoff is

EµT [uP |c∗,m∗, σ] = πP

∫
T

c∗(σ, τA)dµT (τ) +

∫
T

vP (c∗(σ, τA))σm∗(σ,τ)dµT (τ),

we obtain the following corollary.
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Corollary 2. For any intervention profile σ, we have that

EµT [uP |c∗,m∗, σ] ≥ πP Ĉ(σ) + vP

[
σ0 + (σ1 − σ0)

∫
T

m∗(σ, τ)dµT (τ)

]
.

Furthermore, if Σ = [0, 1]2, then the data-driven heuristic policy σ̂(µT ) defined by

σ̂(µT ) ∈ arg max
σ∈[0,1]2

πP Ĉ(σ) + vP

[
σ0 + (σ1 − σ0)

∫
T

m∗(σ, τ)dµT (τ)

]

is a weakly undominated policy with respect to the unknown true distribution µT .

This corollary shows that even though messages are unverifiable and there is arbitrary

uncertainty about the environment, it is possible to obtain a tight data-driven bound on

the payoffs achieved by any policy. Furthermore, the policy obtained by maximizing this

bound is undominated, i.e. it cannot be strictly improved on. While identifying policy

σ̂(µT ) requires running a large number of policy experiments, the underlying logic can be

exploited in more practical ways: the basic insight is to first, find an intervention profile

with information content λ low enough that monitors are willing to send complaints; second,

scale up intervention rates, keeping the information content of intervention λ constant, until

complaints diminish by a sufficient amount.

5 Discussion

5.1 Summary

We model the problem of a principal who relies on messages from an informed monitor to

target intervention against a possibly corrupt agent. The difficulty is that the agent can

dissuade the monitor from informing the principal by threatening to retaliate conditional on

observables. In this setting, intervention becomes a signal which the agent can exploit to

effectively dissuade the monitor from complaining. As a consequence, effective intervention
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strategies must garble the information content of messages. In particular, there needs to

be a positive baseline rate of intervention following the message “non-corrupt”. This cre-

ates an imperfect monitoring problem between the agent and the monitor which limits the

effectiveness with which they can side-contract.

Because hard evidence of corruption is hard to come by, we explore the extent to which

one can make inferences about unobservable corruption, as well as evaluate policies, on the

basis of unverifiable messages alone. We consider a general framework which allows for

near arbitrary incomplete information and heterogeneity across agents and monitors. We

establish general properties of reporting and corruption patterns which can be exploited to

derive bounds on underlying corruption as a function of unverifiable reports. These bounds

suggest a heuristic to identify robust intervention policies. First, find intervention profiles

that guarantee sufficient plausible deniability for monitors to complain. Then, increase

intervention rates proportionally until complaints fall to an acceptable level.

5.2 Implementation

A strength of our analysis is that it does not presume that the principal has extensive control

over the payoffs of the agent and the monitor. This accommodates environments in which

the relevant principal has to rely on existing institutional channels to carry out interventions.

Still our policy suggestions raise some practical concerns.

Commitment to mixed strategies. Our analysis assumes the principal is able to commit

to mixed strategies which is admittedly more demanding than committing to pure strate-

gies. One way to justify this assumption is to invoke reputational concerns in an unmodelled

continuation game, committing to mixed strategies being equivalent to forming a reputation

under imperfect public monitoring (Fudenberg and Levine, 1992). A more practical obser-

vation is that commitment to mixed strategies can be achieved through hard-wired garbling

of messages at the surveying stage. Specifically, instead of recording messages directly, the
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principal may record the outcomes of two Bernoulli lotteries l0 and l1 such that

l0 =

 1 with proba σ0

0 with proba 1− σ0

and l1 =

 1 with proba σ1

0 with proba 1− σ1.

The monitor communicates by privately picking a lottery, with observed realized outcome y.

Conditional on y the principal intervenes according to pure strategy i(y) = y. This approach

has the benefit of making plausible deniability manifest to participating monitors. Crucially,

one can recover aggregate submitted reports from outcome data y alone: for any mapping

m : T → {0, 1}, ∫
T

m(τ)dµT (τ) =

∫
T
y(τ)dµT (τ)− σ0

σ1 − σ0

.

Hence the analysis of Section 4 continues to apply as is. Note that this implementation

of mixed strategies is closely related to the randomized response techniques introduced by

Warner (1965).34

Destroying information. A salient concern with the policies we consider is that they

require the government to explicitly garble valuable information. In particular, we show

that the optimal policy may involve σ1 < 1 and σ0 > 0, i.e. triggering intervention against

agents for whom there have been no complaints, while not investigating all agents against

which a complaint has been filed. This is supect behavior that governments may prefer to

avoid. This reinforces the argument that garbling should occur at the recording stage, with

the caveat that the garbling procedure needs to appear natural and legitimate to participants.

In addition, one may choose to focus on the subset of policies such that σ1 = 1, so that the

government cannot be suspected of abetting corruption.

34The main difference is that typical randomized response techniques simply enjoin the monitor to garble
his response, but the monitor can always submit his preferred message. Hence, in our fully rational frame-
work, traditional randomized response techniques do not guarantee plausible deniability in equilibrium. This
difference is important when messages are used for equilibrium incentive design, rather than for one-shot
surveys.
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Validating structural inference. Our analysis emphasizes the possibility of making

structural inferences over underlying corruption on the basis of “soft” unverifiable mes-

sages. This is motivated by the fact that in many environments corruption itself is very

difficult to observe. While it is encouraging that in a fairly general setting, theory allows us

to place bounds on underlying corruption on the basis of unverifiable messages alone, it is

legitimate to worry whether equilibrium inferences from our model can be trusted. In this

respect, obtaining “hard” direct measures of corruption is valuable, even though cost limits

their scalability. Indeed, even a limited sample of direct measures could be used to calibrate

the meaning of unverifiable messages obtained from agents, as well as confirm or not the

structural implications of our analysis.

Appendix - For Online Publication

A Extensions

A.1 Examples

In this appendix we explicitly solve the model in the case where payoffs are complete informa-

tion between the agent and the monitor, but allow for the more general payoffs described in

Assumption 2. Specifically, intervention may be costly even to honest agents (vA(c = 0) < 0)

and monitors may be malicious (vM(c = 0,m = 1) > 0). We describe explicitly environments

for which the possibility results discussed at the end of Section 2 are true. Again, the model

is solved by backward induction.

Reporting by the monitor. Take as given an intervention profile σ = (σ0, σ1), with

σ0 < σ1, and a level of retaliation r conditional on intervention.

When the agent is not corrupt (c = 0), the monitor sends message m = 0 if and only if

σ1[vM(c = 0,m = 1)− r] < σ0[vM(c = 0,m = 0)− r].
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This holds if and only if

r ≥ r0
σ ≡

[
σ1vM(c = 0,m = 1)− σ0vM(c = 0,m = 0)

σ1 − σ0

]+

.

Because the monitor is malicious, a non-corrupt agent may now have to threaten the monitor

with positive retaliation r0
σ to induce the monitor to send message m = 0.

When the agent is corrupt, i.e. c = 1, the monitor will report corruption and send

message m = 1 if and only if

σ1[vM(c = 1,m = 1)− r] ≥ σ0[vM(c = 1,m = 0)− r].

This will hold whenever

r ≤ r1
σ ≡

[
σ1vM(c = 1,m = 1)− σ0vM(c = 1,m = 0)

σ1 − σ0

]+

.

As before, r1
σ is decreasing in the ratio σ1

σ0
. In addition r0

σ is decreasing in σ1
σ0

over the range

of ratios σ1
σ0

such that r0
σ > 0. As before, the information content of intervention affects the

level of retaliation needed to influence messaging.

Information manipulation and corruption. We now examine the agent’s behavior.

Consider the agent’s incentives to manipulate information given a corruption decision c ∈
{0, 1}. Since retaliation r is costly to the agent, he either picks r = 0 and does not influence

the monitor, or picks r = rcσ and induces message m = 0 at the lowest possible cost. Hence,

the agent will induce a message m(σ, c) such that

m(σ, c) ∈ arg max
m∈{0,1}

σm[vA(c)− 1m=0kA(rcσ)]. (12)

It follows that the agent will choose not to be corrupt if and only if

πA + max{σ1vA(c = 1), σ0[vA(c = 1)− kA(r1
σ)]} ≤ max{σ1vA(c = 0), σ0[vA(c = 0)− kA(r0

σ)]}.
(13)

We can now provide explicit illustrations of the possibility results discussed in Section 2.

Consider policies σO and σN satisfying condition (4). Figure 3(a) illustrates the fact that

when vA(c = 0) < 0, it may be that increasing intervention (even without increasing the
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(a) unproductive intervention: vA(c = 1) =
−4.5− 5.5c, vM (c,m) = −2 + c(3 + 3m)
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(b) malicious monitor 1: vA(c = 1) = −10c,
vM (c,m) = 2 + c(−1 + 2.5m)
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(c) malicious monitor 2: vA(c = 1) = −2− 8c,
vM (c,m) = 2 + c(−1 + 2.5m)

Figure 3: Corruption decisions and messages (c,m) as a function of intervention profiles
(σ0, σ1); common parameters: πA = 5, kA(r) = 20r.
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likelihood ratio of intervention rates) can result in greater corruption. In this example,

increasing the baseline intervention rate σ0 diminishes the payoffs of non-corrupt agents

without affecting the payoffs of corrupt ones.

Figures 3(b) and 3(c) show that when the monitor is malicious, messages of corruption

are no longer a lower bound to true corruption. In fact, policy changes from σO to σN

can generate both increases and decreases in reports without corresponding changes in the

underlying level of corruption.

Finally, the environments of Figures 3(a) and 3(b) can be used to construct a stochastic

example in which a policy change from σO to σN induces a strict drop in reported cor-

ruption and a strict increase in underlying corruption. Indeed imagine that while payoffs

(vM , vA, πA) are common-knowledge between the agent and the monitor, they are uncertain

for the principal. In particular, say that with probability .3 payoffs are those of Figure 3(a)

and with probability .7 payoffs are those of Figure 3(b). Then one can pick policies σO and

σN satisfying condition (4) such that E[mO] = .7 and E[cO] = 0, while E[mN ] = .3 and

E[cN ] = .3. In this case, a strict drop in complaints is associated with a strict increase in

corruption.

A.2 Multiple Monitors

Our analysis can be extended to settings with multiple monitors. Imagine that there are

now L monitors indexed by i ∈ {1, · · · , L}, each of which observes the agent’s corruption

decision c ∈ {0, 1} and can send a binary message mi ∈ {0, 1} to the principal. We denote by
−→m ∈ {0, 1}L the vector of messages sent by the monitors. We abuse notation and denote by 0

the message profile in which all monitors report mi = 0, and by 1 the message profile in which

all monitors report mi = 1. An intervention policy σ is now a map σ : {0, 1}L → [0, 1]. For

example, likelihood of intervention may be an affine function of the number of complaints,

σ−→m = σ0 + (σ1 − σ0) 1
L

∑L
i=1 mi. Alternatively, it may follow a threshold rule, with threshold

Θ ∈ N, i.e. σ−→m = σ0 + (σ1 − σ0)1∑L
i=1mi>Θ. For simplicity, we consider intervention policies

such that for all −→m, σ−→m ≥ σ0

As in Section 3, the agent and monitors have arbitrary types, except for the fact that

Assumption 2 is common knowledge among players. We assume that each monitor i’s value

conditional on intervention vi,M depends only on c and her own message mi. The agent now

commits to a profile of vector-valued retaliation intensities −→r : Z → [0,+∞)L associated

with a cost function kA(−→r ) that is increasing in all components of −→r .

The vector of monitors’ types is denoted by −→τM = (τi,M)i∈{1,··· ,L}. Note that now, each
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monitor’s type must include a belief over other monitors’ types. Furthermore, the agent’s

belief over −→τM is now a joint distribution over (TM)L. Finally, the distribution of leaks z may

depend on the vector of messages −→m. We denote by −→m ∈
(
{0, 1}TM

)L
profiles of message

vectors as a function of the monitors’ types. Note that for all i ∈ {1, · · · , L} monitor i’s

message profile mi(τi,M) is only a function of monitor i’s type (i.e. we don’t consider richer

mechanisms that would let monitors’ exchange information about their type).

The main properties identified in Section 4 continue to hold: for messages to be infor-

mative, it must be that all likelihood ratios of intervention rates be bounded away from

0; when policies σ are ordered along a ray, message profiles change only when corruption

decisions change, and corruption must decrease along a ray going away from the origin. One

difficulty is that there may now be multiple messaging equilibria among agents conditional

on a given retaliation policy. We work under the assumption that given a retaliation policy,

the agent is able to select the equilibrium that most benefits him, and that this equilibrium is

unique. We continue to think of the agent as selecting a message profile −→m under constraints

corresponding to the monitors’ incentive compatibility conditions.

Fact A.1. If σ0 = 0 then all agents that benefit from corruption will be corrupt, and induce

message profile −→m = 0.

Proof. The proof is identical to that of Proposition 3. By setting r(z = ∅) = 0 and r(z 6=
0) = r arbitrarily high, the agent is able to induce message −→m = 0 at no cost in equilibrium,

which insures that there is no intervention.

Given an interior intervention profile σ, define
−→
λ =

(
σ−→m
σ0

)
−→m∈{0,1}L

the vector of likelihood

ratios of intervention.

Proposition A.1. Fix a vector of intervention ratios
−→
λ and consider the ray of intervention

policies {σ0

−→
λ for σ0 ∈ [0, 1]}. Along this ray the following properties hold:

(i) conditional on a corruption decision c, the message profile −→m that a given

agent chooses to induce is constant along the ray;

(ii) the agent’s decision to be corrupt is decreasing in σ0 along the ray.

Proof. The proof is essentially identical to that of Proposition 4. Let us begin with point

(i). Conditional on a corruption decision c ∈ {0, 1}, for any message profile −→m, we define
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the cost KτA
c,−→m(σ) of inducing message profile −→m as

KτA
c,−→m(σ) =

1

σ0

inf
r:Z→[0,+∞)

∫∫
Z×TL

M

σ−→m(−→τM )kA(r(z))dF (z|c,−→m(−→τM))dΦ(−→τM |τA)

s.t. ∀−→τM = (τi,M)i∈{1,··· ,L}, (mi)i∈{1,··· ,L} = −→m(τi,M) satisfies

∀i ∈ {1, · · · , L},

E
[
σ(mi,

−→m−i)vi,M(mi, c)− ri
∣∣mi,
−→m−i, c

]
≥ E

[
σ(¬mi,

−→m−i)vi,M(¬mi, c)− ri
∣∣¬mi,

−→m−i, c
]
.

It follows from inspection that KτA
c,−→m is a function of

−→
λ only. By convention KτA

c,−→m is set to

+∞ whenever message profile −→m is not implementable. Given a corruption decision c, the

agent chooses to induce the message profile −→m solving

σ0 max−→m

{
E
[−→
λ −→m(−→τM )vA(c)

]
−KτA

c,−→m(
−→
λ )
}
.

It follows that the optimal message induced by the agent is a function of
−→
λ only, and

therefore remains constant along rays.

We now turn to point (ii). An agent chooses to be non-corrupt if and only if

πA + σ0 max−→m

{
E
[−→
λ −→m(−→τM )vA(1)

]
−KτA

1,−→m(
−→
λ )
}
≤ σ0 max−→m

{
E
[−→
λ −→m(−→τM )vA(0)

]
−KτA

0,−→m(
−→
λ )
}
. (14)

Since πA ≥ 0 it follows that whenever (14) holds for σ0, it must also hold for all σ′0 ≥ σ0.

This proves point (ii).

An implication is that changes in reporting patterns along a ray can be assigned to

changes in corruption. Consider two policies σO, σN such that
−→
λ O =

−→
λ N =

−→
λ and

σO0 < σN0 . For any function X : −→m ∈ {0, 1}L 7→ x ∈ Rn computing a summary statis-

tic of messages, denote by µ̂σX the distribution over x ∈ X({0, 1}L) defined by µ̂σX(x) =∫
T

1X(−→m∗(σ,τ))=xdµT (τ), where −→m∗(σ, τ) is the equilibrium vector of messages for a real-

ized profile of types τ = (τA,
−→τ M) given intervention policy σ. Given policies σO, σN ,

let D denote the distance between message distributions induced by σO and σN defined by

D ≡ 1
2

∑
x∈X({0,1}L) |µσ

N

X (x) − µσ
O

X (x)|. Note that D can be computed from message data

alone. Proposition 6 extends as follows.

Proposition A.2 (inference). For all possible true distributions µT , we have that∫
T

[
c∗(σO, τA)− c∗(σN , τA)

]
dµT (τ) ≥ D
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which implies that D is a lower bound for the mass
∫
T

[1−c∗(σN , τA)]dµT (τ) of honest agents

at policy σN as well as a lower bound for the mass
∫
T
c∗(σO, τA)dµT (τ) of corrupt agents at

policy σO.

Proof. The proof is essentially identical to that of Proposition 6. From Proposition A.1, it
follows that∫
T

[c∗(σO, τA)−c∗(σN , τA)]dµT (τ) ≥
∫
T

1−−−→mτA
∗(σO)6=−−−→mτA

∗(σN )dµT (τA)

≥
∫
TA

max
x∈X

{
1∫

τM
1
X(−−−→mτA

∗(σO,−−→τM ))=x
dµT (τM |τA)6=

∫
τM

1
X(−−−→mτA

∗(σN,−−→τM ))=x
dµT (τM |τA)

}
dµT (τA)

≥ 1

2

∫
TA

∑
x∈X

∣∣∣∣∫
τM

1X(−−−→mτA
∗(σO,−→τM ))=xdµT (τM |τA)−

∫
τM

1X(−−−→mτA
∗(σN ,−→τM ))=xdµT (τM |τA)

∣∣∣∣dµT (τA)

≥ D

which concludes the proof.

A.3 Retaliation and Side Payments

The paper assumes that the agent uses only retaliation to provide incentives to the mon-

itor. It is immediate that the analysis of Section 4 can be extended to allow for side-

payments (modeled as r(z) < 0), provided that there are no rewards given conditional on

no-intervention, i.e. provided that r(z = ∅) = 0.

We now provide sufficient conditions for this to be true in the general framework of Section

3, even if we allow for retaliation as well as side payments, i.e. r ∈ R. The cost of retaliation

kA(·) ≥ 0 is extended over R. For simplicity, we assume that kA is everywhere differentiable,

except at r = 0, where there is a kink: k′A(0−) < 0 ≤ k′A(0+). Recall that state z = ∅ occurs

with probability 1 if there is no intervention, and with probability probF (z = ∅|c,m) if there

is intervention. Let us define p = min(c,m)∈{0,1}2 probF (z = ∅|c,m). The following holds.

Proposition A.3. Whenever

−p× sup
r<0

k′A(r) > (1− p)× sup
r>0

k′A(r) > 0, (15)

for any intervention profile σ and any type τA, the agent’s optimal retaliation strategy is such

that r(∅) = 0.

Whenever the marginal cost of retaliation is low and the probability of intervention

yielding additional information is low, it is optimal for the agent never to give out rewards
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when there are no observed consequences, i.e. z = ∅. Note that it may still be optimal for

the agent to give out rewards, for instance if he gets a particularly informative signal z that

the monitor sent message m = 0.

Proof. By an argument identical to that of Lemma B.2 (see Appendix B), it follows that

at any optimal retaliation profile, r(∅) ≤ 0. Assume that r(∅) < 0. We show that for

ε > 0 small enough, it is welfare improving for the agent to reduce rewards by ε conditional

on z = ∅, and increase retaliation by ε at all states z 6= ∅, i.e. to use retaliation policy

rε(·) ≡ r(·) + ε.
We first show that this change in retaliation policy induces the same messages from

monitors. This is immediate since payoffs have been shifted by a constant: for all m ∈ {0, 1},
we have

−(1− σm)rε(∅) + σm [vM (c,m)− E(rε|i = 1,m, c)] = −(1− σm)r(∅) + σm [vM (c,m)− E(r|i = 1,m, c)]− ε,

which implies that the monitor’s IC constraints are unchanged, and retaliation profile rε

induces the same message profile as r.

We now show that using rε rather than r reduces the agent’s expected retaliation costs.

Indeed, the change in the agent’s retaliation costs is given by∫∫
TM×Z

[kA(rε(z))− kA(r(z))]f(z|m∗(τM ), c)dzdΦA(τM ) ≤ ε
[
p sup
r<0

k′A(r) + (1− p) sup
r>0

k′A(r)

]
< 0

where we used condition (15). This implies that it is not optimal for the agent to choose a retaliation

strategy such that r(∅) < 0.

A.4 Short-run inference

The analysis of Section 4 emphasized inference in equilibrium. We now study inference under

a partial equilibrium in which the monitor adjusts her behavior, while the corruption and

retaliation decisions of the agent remain fixed. It is plausible that this partial equilibrium

model may be better suited to interpret data collected in the short-run.

We assume that corruption, retaliation, and reporting policies (cO, rO,mO) under policy

σO are at equilibrium. Under the new policy σN , we consider the short-run partial equi-

librium in which the agent’s behavior is kept constant equal to cO, rO, while the monitor’s

reporting strategy mN
SR is a best-reply to cO, rO under the new policy σN .

We first note that in the short run, the policy experiment considered in Section 4 is

uninformative.
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Lemma A.1 (no short-run inferences). Consider policies σO and σN such that σN = ρσO

with ρ > 1. In the short-run equilibrium, message patterns are not affected by new policy

σN :

∀τ ∈ T,
∫
T

mO(τ)dµT (τ) =

∫
T

mN
SR(τ)dµT (τ).

Proof. The result follows from the fact that given a retaliation strategy, the monitor’s report-

ing decision, described by (9), depends only on the likelihood ratio of intervention rates.

This is not necessarily a negative result: it can serve as a test of whether the short-run

or long-run equilibrium is most suited for analysis. It also implies that the bounds given in

Proposition 6 remain valid if players play a mixture of long-run and short-run equilibria. We

now show that under additional assumptions, other experimental variation may be used to

extract useful information from short-run data. We first describe variation useful to place

bounds on unreported corruption.

Proposition A.4 (a lower bound on unreported corruption). Consider policies σO and σN

such that σO0 < σN0 and σO1 = σN1 . Under the assumption that there are no malicious monitors

and agents know it, we have that∫
T

cO(τA)[1−mO(τ)]dµT (τ) ≥
∫
T

[mN
SR(τ)−mO(τ)]dµT (τ).

In words, the increase in reports is a lower bound for the amount of unreported corruption.

Proof. The fact that there are no malicious monitors and the agent knows it implies that

conditional on being non-corrupt, i.e. choosing c = 0, the agent never threatens to retaliate,

i.e. r(·) = 0. In addition, since there are no malicious monitors, it must be that mN
SR(τ) = 1

implies cO(τA) = 1. As a consequence, whenever mN
SR(τ) − mO(τ) > 0, it must be that

mO(τ) = 0 and cO(τA) = 1. Therefore cO(τA)(1 − mO(τ)) ≥ mN
SR(τ) − mO(τ). This

concludes the proof.

We now describe variation allowing to obtain a bound on the number of malicious mon-

itors.

Proposition A.5 (a lower bound on the mass of malicious monitors). Assume that there

are no leaks, i.e. f(z|c = 1,m) = f(z|c = 1). Consider policies σO and σN such that

σO0 = σN0 and σO1 < σN1 . We have that∫
T

1vM (c=0,m=1)>0dµT (τ) ≥
∫
T

[
mN
SR(τ)−mO(τ)

]
dµT (τ).
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Proof. Whenever mN
SR(τ) − mO(τ) > 0, it must be that mN

SR(τ) = 1 and mO(τ) = 0. We

show that this can only occur when c = 0 and vM(c = 0,m = 1) > 0.

Indeed, consider first the case where c = 0 and vM(c = 0,m = 1) ≤ 0. The fact that

mO(τ) = 0 implies that

σO1 [vM(c = 0,m = 1)− E(r|m = 1, c = 0)] ≤ σO0 (vM(c = 0,m = 0)− E[r|m = 0, c = 0]) .

Since in this case vM(c = 0,m = 1) − E[r|m = 1, c = 0] ≤ 0, the fact that σN1 > σO1 and

σN0 = σO0 implies

σN1 [vM(c = 0,m = 1)− E(r|m = 1, c = 0)] ≤ σN0 [vM(c = 0,m = 0)− E(r|m = 0, c = 0)] .

Hence we also obtain that mN
SR(τ) = 0.

Consider now the case where c = 1. Using the fact that f(z|c = 1,m = 1) = f(z|c =

1,m = 0), the fact that mO(τ) = 0 implies that

σO1 [vM(c = 1,m = 1)− E(r|c = 1])] ≤ σO0 (vM(c = 1,m = 0)− E[r|c = 1]) . (16)

By Assumption 2, we have that vM(c = 1,m = 1) ≥ vM(c = 1,m = 0). Given that σO1 > σO0 ,

condition (16) can only hold if vM(c = 1,m = 1) − E[r|c = 1] ≤ 0. This implies that

necessarily,

σN1 [vM(c = 1,m = 1)− E(r|c = 1])] ≤ σN0 (vM(c = 1,m = 0)− E[r|c = 1]) .

We have now established that mN
SR(τ) − mO(τ) > 0 implies vM(c = 0,m = 1) > 0.

Proposition A.5 follows by integration over τ ∈ T .

B Proofs

B.1 Proofs for Section 2

We begin by establishing the simplifying claims made in Section 2.

Lemma B.1. It is without loss of efficiency for the principal to: (i) not elicit messages from

the agent; (ii) offer the monitor only binary messages 0, 1; (iii) use an intervention policy

satisfying σ0 ≤ σ1.
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Proof. We begin by showing point (i): it is without loss of efficiency not to elicit messages

from the agent. The agent has commitment power and therefore can commit to the messages

he sends. When the agent sends a message, we can think of him as choosing the intervention

profile σ that he will be facing, as well as the messages sent by the monitor. If a non-corrupt

agent chooses intervention profile σ, then giving additional choices can only increase the

payoffs of a corrupt agent. Hence the principal can implement the same outcome by offering

only the profile σ chosen by a non-corrupt agent.

We now turn to point (ii) and consider enlarging the set of messages submitted by the

monitor. The monitor observes only two pieces of information: the corruption status c ∈
{0, 1} of the agent, and the level of retaliation r ∈ R that he is threatened with in the event

of intervention. A priori, the principal may elicit messages (m, ρ) ∈ {0, 1} × [0,+∞) about

both the corruption status of the agent and the retaliation level she has been threatened

with. This means that intervention rates now take the form σm,ρ ∈ [0, 1].

Take as given an intervention profile σ = (σm,ρ)m∈{0,1},ρ∈[0,+∞). First, note that we can

focus on the case where the agent’s optimal decision is to be non-corrupt, otherwise no-

intervention is the optimal policy. Second, noting that the value of ρ submitted by the

monitor must solve maxρ∈[0,+∞) σm,ρ(vM(c,m)− r) it follows that without loss of generality

one can focus on binary values of ρ ∈ {−,+} such that σm,− = infρ∈[0,+∞) σm,ρ and σm,+ =

supρ∈[0,+∞) σm,ρ.
35 Finally, without loss of efficiency, one can consider intervention profiles

such that for all ρ ∈ {−,+}, σ0,ρ ≤ σ1,ρ. Indeed, given ρ, define σ = maxm∈{0,1} σm,ρ and

σ = minm∈{0,1} σm,ρ, as well as m and m the corresponding messages. Given ρ, the level of

retaliation needed to induce σ rather than σ must satisfy

σ(vM(c,m)− r) ≤ σ(vM(c,m)− r) ⇐⇒ r ≥
[
σvM(c,m)− σvM(c,m)

σ − σ

]+

.

setting m = 1 and m = 0 maximizes the cost of inducing σ for the corrupt agent and

minimizes the cost of inducing σ for the non corrupt agent. Note that this proves point (iii).

Given a profile σ satisfying the properties established above, we now establish the exis-

tence of a binary intervention profile σ̂ = (σ̂m)m∈{0,1} which keeps the payoff of a non-corrupt

agent the same and can only decrease the payoff of a corrupt agent. Specifically set σ̂0 = σ0,−

and set σ̂1 as the intervention rate that would occur under σ if a corrupt agent chose retali-

ation level r = 0. First note that the assumption that the monitor is not malicious implies

35When the monitor is indifferent, she must be inducing the lowest possible intervention rate, otherwise
the agent would increase retaliation by an arbitrarily small amount.
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that a non-corrupt agent will induce intervention rate σ0,− without using retaliation under

both σ and σ̂. Hence the payoff of a non-corrupt agent remains unchanged, and the equi-

librium intervention rate remains the same in both settings. Consider now the problem of

the corrupt agent under σ̂. The respective costs of inducing intervention rates σ0,− and σ̂1

haven’t changed. However the agent now has less choice regarding the intervention rates she

can induce. It follows that the corrupt agent must be weakly worse-off. Hence profile σ̂ also

induces the agent to be non-corrupt. This concludes the proof.

Proof of Lemma 1: We begin with point (i). Note that 0 is the highest payoff the

principal can attain. Under intervention policy σ0 = 0, σ1 = 1, Assumption 1 implies that

it is optimal for the agent to choose c = 0. As a result, there will be no intervention on the

equilibrium path. Hence the principal attains her highest possible payoff, and σ0 = 0, σ1 = 1

is indeed an optimal intervention policy.

Let us turn to point (ii). Consider policies σ such that σ1
σ0
> 2 and the retaliation profile

under which the agent retaliates by an amount r ≡ 2vM(c = 1,m = 1)− vM(c = 1,m = 0).

Retaliation level r is chosen so that whenever the agent is corrupt, the monitor prefers to

send message m = 0. Indeed, the monitor prefers to send message m = 0 if and only if

σ1[vM(c = 1,m = 1)− r] ≥ σ0[vM(c = 1,m = 0)− r]

⇐⇒ r ≥ λvM(c = 1,m = 1)− vM(c = 1,m = 0)

λ− 1
(17)

where λ = σ1
σ0

. Noting that the right-hand side of (17) is decreasing in λ and that λ > 2, we

obtain that the monitor indeed sends message m whenever r ≥ 2vM(c = 1,m = 1)− vM(c =

1,m = 0).

It follows that a corrupt agent’s expected payoff under this retaliation strategy is

πA + σ0[vA(c = 1)− kA(r)] ≥ πA +
1

λ
[vA(c = 1)− kA(r)].

Since πA > 0, it follows that this strategy guarantees the agent a strictly positive payoff for

λ sufficiently large. Given that the highest possible payoff for an agent choosing c = 0 is

equal to 0, it follows that for λ large enough the agent will be corrupt.

Given corruption, we now show that the agent will also use retaliation. Under no retali-

ation the agent obtains an expected payoff equal to πA + σ1vA(c = 1). Under the retaliation

strategy described above, the agent obtains a payoff equal to πA + σ1
λ

[vA(c = 1) − kA(r)].
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Since vA(c = 1) < 0 it follows that for λ large enough, it is optimal for the agent to commit

to retaliation. �

Proof of Lemma 2: Recall that λ = σ1
σ0

. As shown in the text, the corrupt agent induces

message m = 0 if and only if (2) holds, i.e. if

λvA(c = 1) ≤ vA(c = 1)− kA(rλ).

From the fact that rλ is decreasing in λ and vA(c = 1) < 0, it follows that there exists λ0

such that (2) holds if and only if λ > λ0. �

Proof of Proposition 1: By Assumption 1, the optimal intervention profile must discour-

age corruption in equilibrium (σ0 = σ1 = 1 guarantees no corruption and is preferred to

corruption in spite of high intervention costs). Since there won’t be corruption in equilib-

rium, the equilibrium rate of intervention is σ0. The principal’s problem is therefore to find

the smallest value of σ0 for which there exists σ1 ≥ σ0 satisfying

πA + max{σ1vA(c = 1), σ0[vA(c = 1)− kA(rλ)]} ≤ σ0vA(c = 0). (18)

Let us first show that at the optimal policy, it must be that σ1vA(c = 1) = σ0[vA(c =

1) − kA(rλ)]. Indeed, if we had σ1vA(c = 1) > σ0[vA(c = 1) − kA(rλ)], then one could

decrease σ0 while still satisfying (18), which contradicts optimality. If instead we had that

σ1vA(c = 1) < σ0[vA(c = 1) − kA(rλ)], then diminishing σ1 increases rλ which allows to

diminish σ0 while still satisfying (18). Hence it must be that σ1vA(c = 1) = σ0[vA(c =

1)− kA(rλ)]. By definition of λ0, this implies that σ1 = λ0σ0.

Hence (18) implies that πA+σ1vA(c = 1) ≤ σ0vA(c = 0). Furthermore this last inequality

must be an equality, otherwise one would again be able to diminish the value of σ0 while

satisfying (18). This implies that πA +σ1vA(c = 1) = σ0vA(c = 0). This proves the first part

of Fact 1.

We now show that this optimal policy is necessarily interior. We know that σ0 ∈ (0, 1)

from Fact 1 and the assumption that πA + vA(c = 1) < vA(c = 0). Let us show that σ1 < 1.
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The first part of Fact 1 allows us to compute σ1 explicitly as

σ1 =
πA

−vA(c = 1)

1

1− vA(c=0)
λ0vA(c=1)

≤ πA
−vA(c = 1)

1

1− vA(c=0)
vA(c=1)

≤ πA
−vA(c = 1) + vA(c = 0)

< 1,

where the last inequality uses the assumption that πA + vA(c = 1) < vA(c = 0). This con-

cludes the proof of Fact 1. �

Proof of Proposition 2: Condition (5) follows from the proof the fact that since there

are no malicious monitors, an non-corrupt agent can induce message m = 0 at no retaliation

cost.

Let us now show that if cN = 1 then cO = 1. It follows from (5) that mN = 1 implies

cN = 1. Let us define λN ≡ σN
1

σN
0

and λO ≡ σO
1

σO
0
. Assume that cN = 1. Since corruption is

optimal for the agent at σN , we obtain that

πA + max{σN1 vA(c = 1), σN0 [vA(c = 0)− kA(rλN )]} ≥ 0.

Since λN < λO, rλ is decreasing in λ, vA(·) ≤ 0 and σN > σO for the usual vector order, we

obtain that

πA + max{σO1 vA(c = 1), σO0 [vA(c = 0)− kA(rλO)]} ≥ 0.

Hence, it must be optimal for the agent to be corrupt at σO: cO = 1.

Finally, we prove (7). Since mO = 1, we know that cO = 1. Since the agent chooses not

to induce message m = 0 at σO, it must be that λO ≤ λ0, where λ0 was defined in Fact

2. Since λN < λO, it follows from point (i) above that a corrupt agent would not induce

message m = 0 at σN . Hence, it must be that cN = 0. �

Proof of Corollary 1: Fact 2 implies that any profile σN satisfying the condition in (8)

is such that c(σN) = 0.

We now show that there exists a sequence of intervention profiles converging to optimal

policy σ∗ that satisfies the conditions in (8). We know from Fact 1 that policy σ∗ satisfies
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m∗(σ∗) = 0 and σ∗1 = λ0σ
∗
0. Consider sequences (σOn )n∈N and (σNn )n∈N such that

σN0,n =

(
1 +

1

n

)
σ∗0 , σO0,n =

(
1− 1

n

)
σ∗0 ,

σN1,n = λ0

(
1− 1

n

)
σN0,n , σO1,n = λ0

(
1 +

1

n

)
σO0,n.

For n sufficiently large, the pair (σOn , σ
N
n ) satisfies the condition in (8), and sequence (σNn )n∈N

converges to σ∗. This concludes the proof. �

B.2 Proofs for Section 4

Proof of Proposition 3: Consider the case where the monitor is an automaton sending

exogenously informative messages m(c) = c. We show that it is optimal to set σ0 = 0.

Since messages are exogenous, it is optimal for the agent not to engage in retaliation

regardless of his type. Therefore the agent will be corrupt if and only if

πA + σ1vA(c = 1) ≥ σ0vA(c = 0).

Hence we obtain that the principal’s payoff is∫
T

1πA+σ1vA(c=1)≤σ0vA(c=0)σ0vP (c = 0)dµT +

∫
T

1πA+σ1vA(c=1)>σ0vA(c=0)[πP + vP (c = 1)σ1]dµT

≤
∫
T

1πA+σ1vA(c=1)>σ0vA(c=0)[πP + vP (c = 1)σ1]dµT ,

where we used the assumption that vA(c) ≤ 0 for all c ∈ {0, 1}, and πP < 0. Hence it follows

that setting σ0 = 0 is optimal for the principal when messages are exogenously informative.

We now consider the case where messages are endogenous. A proof identical to that of

Fact 1 shows that whenever πA > 0 for λ sufficiently high, c∗(σ, τA) = 1. Hence by dominated

convergence, it follows that

lim
λ→∞

∫
T

c∗(σ, τA)dµT (τ) ≥ probµT (πA > 0).

We now show that for all types τA such that vA(·) < 0, the agent will induce the monitor

to send message m = 0. The proof is by contradiction. Consider an agent of type τA and
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assume that there exists ε > 0 such that for λ arbitrarily large,∫
TM

m∗(σ, τ)dΦ(τM |τA) > ε.

This implies that given a corruption decision c, the agent’s payoff is bounded above by

πA × c+

[
σ0 + (σ1 − σ0)

∫
TM

m∗(σ, τ)dΦ(τM |τA)

]
vA(c) < πA × c+ σ0[1 + (λ− 1)ε]vA(c).

Consider the alternative strategy in which the agent chooses corruption status c but commits

to retaliate with intensity

r = sup
vM∈suppΦ(·|τA)

[2vM(c,m = 1)− vM(c,m = 0)]
1

minm,c probF (z 6= ∅|m, c)

whenever z 6= ∅. This retaliation strategy ensures that all types τM in the support of Φ(·|τA)

choose to send message m = 0. Under this strategy the agent obtains a payoff greater than

πA × c+ σ0[vA(c)− kA(r)].

For λ sufficiently large that (λ − 1)εvA(c) ≥ kA(r), this contradicts the hypothesis that

m∗ is an optimal message manipulation strategy for the agent. Hence it must be that

limλ→∞
∫
TM

m∗(σ, τ)dΦ(τM |τA) = 0. This concludes the proof of Proposition 3. �

Lemma B.2. For any corruption decision c, it is optimal for the agent to retaliate only

conditional on intervention: for any intervention policy σ, the agent’s optimal retaliation

policy is such that r(∅) = 0.

Proof of Lemma B.2: Taking a corruption decision c as given, the agent’s expected

payoff under an optimal retaliation profile r : Z → [0,+∞) is

πA × c+ prob(m = 0|r, c, σ)σ0[vA(c)− E(kA(r)|m = 0, c)]

+ prob(m = 1|r, c, σ)σ1[vA(c)− E(kA(r)|m = 1, c)].

Therefore, if it is optimal for the agent to engage in a positive amount of retaliation, it must

be that

σ0[vA(c)− E(kA(r)|m = 0, c)] ≥ σ1[vA(c)− E(kA(r)|m = 1, c)],

46



since otherwise, no retaliation would guarantee the agent a greater payoff. We now show

that setting r(∅) to 0 increases the probability with which the monitor sends message m = 0.

Since it also reduces the cost of retaliation, it must increase the agent’s payoff.

A monitor sends a message m = 0 if and only if

−(1− σ0)r(∅) + σ0[vM(c,m = 0)− E(r|m = 0, z 6= ∅, c)probF (z 6= ∅|m = 0, c) (19)

− r(∅)prob(z = ∅|m = 1, c)]

≥ −(1− σ1)r(∅) + σ1[vM(c,m = 1)− E(r|m = 1, z 6= ∅, c)probF (z 6= ∅|m = 1, c)

− r(∅)prob(z = ∅|m = 1, c)].

Since σ1 ≥ σ0 and, by assumption, probF (z 6= ∅|m = 1, c) ≥ probF (z 6= ∅|m = 0, c), it

follows that whenever (19) holds for a retaliation profile such that r(∅) > 0, it continues

to hold when r(∅) is set to 0, everything else being kept equal. Hence optimal retaliation

profiles are such that r(∅) = 0. �

Proof of Proposition 4: We begin with point (i). We know from Section 4 that the

agent’s payoff conditional on a corruption decision c and a message profile m can be written

as

πA × c+ σ0

{∫
TM

λm(τM )vA(c)dΦ(τM |τA)−KτA
c,m(λ)

}
.

It follows that given a corruption decision c, the agent induces a message profile m that

solves

max
m∈M

∫
TM

λm(τM )vA(c)dΦ(τM |τA)−KτA
c,m(λ).

Since this problem depends only on ratio λ = σ1
σ0

, it follows that mO = mN .

Let us turn to point (ii). Assume that it is optimal for the agent to take decision c = 0

at intervention profile σ. It must be that

πA + σ0

{∫
TM

λm(τM )vA(c = 1)dΦ(τM |τA)−KτA
c=1,m(λ)

}
≤ σ0

{∫
TM

λm(τM )vA(c = 0)dΦ(τM |τA)−KτA
c=0,m(λ)

}
.

Since πA ≥ 0, this implies that∫
TM

λm(τM )vA(c = 0)dΦ(τM |τA)−KτA
c=0,m(λ)−

(∫
TM

λm(τM )vA(c = 1)dΦ(τM |τA)−KτA
c=1,m(λ)

)
≥ 0,
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which implies that keeping λ constant

πA + σ′0

{∫
TM

λm(τM )vA(c = 1)dΦ(τM |τA)−KτA
c=1,m(λ)

}
≤ σ′0

{∫
TM

λm(τM )vA(c = 0)dΦ(τM |τA)−KτA
c=0,m(λ)

}
.

for any σ′0 ≥ σ0. This implies that the agent will choose not to be corrupt at any profile ρσ,

with ρ > 1.

Point (iii) follows from point (ii). For any σO, σN such that σN = ρσO with ρ > 1, we

have that for all types τA ∈ TA, c∗(σO, τA) ≥ c∗(σN , τA). Integrating against µT yields point

(iii). �

Proof of Proposition 5: Fix σ and a distribution µT such that
∫
T

m∗(σ, τ)dµT (τ) =

M ∈ [0, 1]. Fix C ∈ [0, 1]. We show that there exists µ̂T such that
∫
T

m∗(σ, τ)dµ̂T (τ) = M

and
∫
T
c∗(σ, τA)dµT (τ) = C.

It is sufficient to work with type spaces such that the agent knows the type of the monitor,

provided we allow payoffs to be correlated. A possible environment is as follows. The agent

observes intervention and no other signal. With probability C, the agent gets a strictly

positive payoff πA > 0 from corruption. Conditional on πA > 0, with probability α, the

monitor has positive value for intervention against corrupt agents, i.e. vM(c = 1,m) = v >

0 = vM(c = 0,m); with probability 1 − α, the monitor has a low value for intervention on

corrupt agents: vM(c,m) = 0 for all (c,m) ∈ {0, 1}2. The cost of retaliation for the agent is

such that kA is convex and strictly increasing. For vA(c = 1) > 0 appropriately low, it will

be optimal for the agent to be corrupt, and commit to an arbitrarily low retaliation profile

so that the monitor with a low value for intervention sends message m = 0 and the monitor

with a high value for intervention sends message m = 1.

With complementary probability 1 − C the agent gets a payoff πA = 0 from corruption

and has an arbitrarily high cost of retaliation. The agent’s values upon intervention are

such that vA(c = 1) < vA(c = 0). With probability β, the monitor has negative value for

intervention against a non-corrupt agent vM(c = 0,m) < 0. With probability 1 − β the

monitor gets a positive payoff v > 0 from intervention against the agent, regardless of his

corruption status. For v and a cost of retaliation kA sufficiently high, the agent will choose

not to be corrupt, the non-malicious monitor will send message m = 0, and the malicious

monitor will send message m = 1.
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For any C ∈ [0, 1] and M ∈ [0, 1], one can find α and β such that Cα + (1− C)β = M.

This concludes the proof. �

Proof of Proposition 6: From Proposition 4 (ii), we obtain that c(σO, τA)− c(σN , τA) ∈
{0, 1}. Using Proposition 4 (i), this implies that c(σO, τA) − c(σN , τA) ≥ |m(σO, τ) −
m(σN , τ)|. Integrating against µT implies that∫

T

|m(σO, τ)−m(σN , τ)|dµT (τ) ≤
∫
TA

[c(σO, τA)− c(σN , τA)]dµT (τA)

⇒
∣∣∣∣∫
T

m(σO, τ)−m(σN , τ)dµT (τ)

∣∣∣∣ ≤ ∫
TA

[c(σO, τA)− c(σN , τA)]dµT (τA).

This concludes the proof. �

Proof of Corollary 2: The first part of the corollary follows directly from Proposition

6. The second part of the corollary follows from Fact 1. Indeed, the strategy profile σ̂(µT )

coincides with the optimal strategy profile whenever payoffs are complete information and

Assumption 1 holds. �
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